Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Magma emplacement in the top unconsolidated sediments of rift basins is poorly understood. We compare two shallow sills from the Guaymas Basin (Gulf of California) using core data and analyses from IODP Expedition 385, and high‐resolution 2D seismic data. We show that magma stalling in the top uncemented sediment layer is controlled by the transition from siliceous claystone to uncemented silica‐rich sediment, favoring flat sill formation. Space is created through a combination of viscous indentation, magma‐sediment mingling and fluidization processes. We show that sills emplace above the opal‐A/CT diagenetic barrier. Our model suggests that in low magma input regions sills emplace at constant depth from the seafloor, while high magma input leads to upward stacking of sills, culminating in a funnel‐shaped intrusions. Our petrophysical, petrographic, and textural analyses show that magma‐sediment mingling creates significant porosity (up to 20%) through thermal cracking of the assimilated sediment. Stable isotope data suggest carbonate formation at 70–90°C, consistent with background geothermal gradient at 250–325 m depth. The unconsolidated, water‐rich host sediments produce little thermogenic gas through contact metamorphism, but deep diagenetically formed gas bypasses the low‐permeability top sediments via hydrothermal fluids flowing through the magma plumbing system. This hydrothermal system provides a steady supply of hydrocarbons at temperatures amendable for microbial life, serving as an incubator that may be abundant in magma‐rich young rift basins and play a key role in sustaining subseafloor ecosystems.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Submarine groundwater discharge is increasingly recognized as an important component of the oceanic geochemical budget, but knowledge of the distribution of this phenomenon is limited. To date, reports of meteoric inputs to marine sediments are typically limited to shallow shelf and coastal environments, whereas contributions of freshwater along deeper sections of tectonically active margins have generally been attributed to silicate diagenesis, mineral dehydration, or methane hydrate dissociation. Here, using geochemical fingerprinting of pore water data from Site J1003 recovered from the Chilean Margin during D/V JOIDES Resolution Expedition 379 T, we show that substantial offshore freshening reflects deep and focused contributions of meteorically modified geothermal groundwater, which is likely sourced from a reservoir ~2.8 km deep in the Aysén region of Patagonia and infiltrated marine sediments during or shortly after the last glacial period. Emplacement of fossil groundwaters reflects an apparently ubiquitous phenomenon in margin sediments globally, but our results now identify an unappreciated locus of deep submarine groundwater discharge along active margins with potential implications for coastal biogeochemical processes and tectonic instability.more » « less
-
Abstract The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems.more » « less
An official website of the United States government
